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Introduction

* In this topic, we will

Look at how floating-point numbers can seriously affect
the results of Gaussian elimination and backward substitution

Describe the Gaussian elimination algorithm with

partial pivoting

Look at the Jacobi method for approximating the solution to
a system of linear equations using iteration

Describe the condition number of a matrix
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Linear algebra

Systems of linear equations are often the only ones that can be
approximated numerically with reasonable certainty

— Many non-linear systems are often approximated using linear systems
* For example, small-signal analysis of non-linear devices

— The modelling of objects with momentum can generally be
done locally in time by linear approximations

 This of course fails if, for example, an object strikes another object
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Linear algebra

Consider a system of n linear equations in n unknowns
Aua=v
To solve such a system, we:
— Create the n x (n + 1) augmented matrix(A V)
— We apply row operations on the augmented matrix until
the matrix is in row-echelon form
* The three elementary row operations are:
— Swapping two rows
— Adding a multiple of one row onto another
— Multiplying a row by a non-zero scalar
* The first two are used for this process of Gaussian elimination

— Ifrank( 4 ) = n, we may use backward substitution to find
the unique solution
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[ssues with linear algebra

Issues:

— If the matrix 4 is dense, the number of floating-point operations
(FLOPs) can be as high as

2 51, 1
—Nn ——n" ——n
3 p) 6
— Many times, in adding a multiple of one row onto another,

there is the possibility of subtractive cancellation

— Additionally, adding a large multiple of one row onto another
may result in x + y = y when x is the critical value
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[ssues with linear algebra

* Consider the following system:
£+441@@@ +491000 §+491@@@j_[0.00001 1 1)

+491000 +491000 @ +492000 1 12

* By observation, the solution should be close to

=

— The exact solution is

100000

090999 1.00001
u e =

99998 0.99998

99999

+491000
+491000

— To four significant digits, this 1s u = (
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[ssues with linear algebra

Now, applying Gaussian elimination:

0.00001 1 |1
1 1 2

— Add -100 000 times Row 1 onto Row 2, resulting the calculations:
—100 000 +1=-99999 = -541000

~100 000 + 2 =-99 998 = -541000
— Thus, we are left with

0.0001 1| 1
0 ~100000 | —100000

— Thus u, =1 u:(oj
— Substituting this into Row 1, we get that u, =0 1



[ssues with linear algebra

Thus, while the best answer is
+491000
) (+491@@@ j
Gaussian elimination and backward substitution gave us

+000000
u~=
+491000

What happened?

— When we added a huge multiple of Row 1 onto Row 2,
this had the effect of swamping out Row 2

* Recallthata, ; +ca, ;=ca, ;ifca, ;>>a, ;
* Consequently, the matrix ended up looking like:

a, 4, §a1,3 a a , a 5
Ay, Uy, Uy, 0 —Cd,, : —Cd;; 8

.....
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Partial pivoting

Thus, by adding a large multiple of one row onto another,
we lost all information about that second row

Recall in linear algebra,
if you had a zero in the pivot position, you’d swap two rows:

0 11 1 12
1 12 0 11

Gaussian elimination with partial pivoting says to swap the row
with the largest-in-magnitude entry on or below the pivot to
the pivot row
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Partial pivoting

* Applying this here, we would now have:

0.00001 1 i1 ] )
] 1 2 0.00001 1 1

— Adding —0.00001 times Row 1 onto Row 2 now leaves Row 2

unchanged: 11 2
0 1 :1

— Applying backward substitution, gives us that

i)

10



Partial pivoting
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You may think this is unlikely to occur with double-precision

floating-point numbers, but consider:
21 07 7 :98

03 0.1 0 04
0 1 12
1

— The unique solution is clearly u =| 1
|

— Let us use Gaussian elimination as taught in first year
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Partial pivoting

* Neither 0.3 nor 2.1 can be stored exactly in binary, 0.3

and there is also round-off error in calculating ———

— Adding this times Row 1 onto Row 2 yields: 2l

(21 07 7 :98) (2.1 07 7 :98
03 0.1 0 04[~/0 2% 1 1
0 1 1 2 0o 1 12

— Technically, the entry at (2, 2) is non-zero,
so next we add —2°% times Row 2 onto Row 3:

2.1 07 7 :98) (21 07 7 198
03 0.1 0 04[~/0 2% 1 1
o 1 1:2 0 0 2% 2%

12



Partial pivoting

* Applying backward substitution:

21 07 7:98) (21 07 7 98
03 0.1 0 04|~[0 27 1 1
0 1 1 2 0 0 2% ip%

— Next, 27°u, +u, =1,50 27°u, +1=1, and hence u, =0
— Finally, 2.1u, +0.7u, + 7Tu, =9.8,s02.1u, +7 =98,

13" 1
henceulzﬁzlg sou=|0 |andnot u=|1
' I 1)



Note that

(2.1

Partial pivoting

(2.1 0.7
0.3 0.1

0 1

0.7 7

while [ 0.3 0.1 O

0

11,

7
0

1

9.8
=104
2

(9.8
0.4
]

— This is not a “pathological” matrix,

one that might significantly amplify any error

14
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Partial pivoting

Notice that that swapping Rows 2 and 3 first yields
(21 0.7 7 98) (21 07 7 :9.8
0 2 1.1 [~/0 1 12
o 1 1:2 ) {0 2% 1.1

Next adding —2-°° times Row 2 onto Row 3 makes no change
2.1 0.7 7 9.8
~lo 1 12

0 0 1 1

Thus, backward substitution yields the solution u=| 1

15
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Gaussian elimination with partlal plvotlng

Thus, you could describe the Gaussian elimination algorithm
where 4:R"” — R™ so that 4 is an m x n matrix as follows:

1. Createthem x (n + 1) augmented matrix(A V)
2. Assigni«— landj« 1
3. While j<n+1,

i.  If Column j contains no leading non-zero entries, update j «—j + 1
and return to Step 3.

ii. Find the row with the largest-in-magnitude non-zero leading entry
in Column j (if there are multiple such entries, pick one),
and swap that row with Row i

iii. For each other Row £ that has a leading non-zero entry in Column j,
ay

al’]

iv. Updatei« i+ 1andj <« + 1; and return to Step 3.
16



Why does this help?

— If the largest entry in absolute value is moved to the pivot,
then when we add a multiple of one row onto another,
we are guaranteed that

— Thus, in general, we will avoid the issue of adding a significant
multiple of one row onto another

17

¢ R ATEE © fuinearlgebis //m
Gaussian elimination with partlal pivoting



* For example, suppose we are to solve

(—15 -6 58 7 [ 12.7

4 4 -88 -1.6 —34.4
u:

5 2 1 -1 8

3 72 16 24 -12.2)

18



* First, we create the augmented matrix:

-15 -6 58 7 | 127
4 4 -88 -1.6 -344
5 2 1 -1 . 8
3 72 16 24 -122

19
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Gaussian elimination with partial pivoting

* Starting in the first column, the largest entry in absolute value
on or below entry (1, 1) is 5 in Row 3

— Swap Rows 1 and 3

-15 -6 58 7 | 127
4 4 88 -16 -344

5) 2 1 -1 8
3 72 1.6 24 -122
5 2 1 -1 i 8

4 4 88 -16 -344
-1.5 -6 58 7 . 127
3 72 1.6 24 -122 20
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Gaussian elimination with partial pivoting

Now, add appropriate multiples of Row 1 onto Rows 2, 3 and 4:
— Add —4/5 =—-0.8 times Row 1 onto Row 2
— Add —(-1.5)/5=0.3 times Row 1 onto Row 3
— Add -3/5 =-0.6 times Row 1 onto Row 4

5 2 1 -1 i 8
4 4 88 -1.6 -34.4

=15 6 58 7 127
3 72 16 24 -122
(5 2 1 -1 i 8
0 24 96 -08 —40.8

0 -54 61 67 151
0 6 1 3 —17 21
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Gaussian elimination with partial pivoting

* Continuing in the second column, the largest entry in absolute
value on or below entry (2, 2) is 6 in Row 4

— Swap Rows 2 and 4

5 2 1 -1 i 8

0 24 96 -08 —40.38
1o =54 61 67 151

0 (6 ) 1 3 -17

(5 2 1 -1 8
0 6 1 3 17
0 -54 61 67 151
0 24 -96 -08 -408 -
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Gaussian elimination with partial pivoting

Now, add appropriate multiples of Row 2 onto Rows 3 and 4:
— Add —(-5.4)/6 = 0.9 times Row 2 onto Row 3
— Add -2.4/6 = —0.4 times Row 2 onto Row 4

2 1 -1 | 8

6 1 3 -17
54 61 67 151

24 -9.6 -0.8 —40.8
(5 2 1 -1 8
06 1 3 17
0 0 7 94 -02
0 0 -10 -2 @ -34 %

S O O
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Gaussian elimination with partial pivoting

* Continuing in the third column, the largest entry in absolute value
on or below entry (3, 3) is —10 in Row 4

— Swap Rows 3 and 4

(5 2 1 -1 8
06 1 3 17
oo 7 94 -02
0 0 (-10) -2 -34
(5 2 1 -1 i 38
06 1 3 17
1o 0 -10 2 -34
0 0 7 94 —02) .
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Gaussian elimination with partial pivoting

 Now, add an appropriate multiple of Row 3 onto Row 4:

— Add -7/(-10) = 0.7 times Row 3 onto Row 4

S O O

S O N

S O N

1
—10
7

1
—-10

-1
3
—7

9.4 :
_1
3 |
_2

25
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Gaussian elimination with partial pivoting

e We can now use backward substitution to find the solution:

(5 2 1 -1 38
06 1 3 -17
0 0 -10 -2 -34
0 0 0 8 -24

I/l4 T —3 1
— — — —2
e 34+ 2u, _ 34+2( 3):4 ye
—10 —10 4
—17—-u, -3 —17 - —
", = Uy —3u, 17 4+9:_2 3
6 6
u, :8—2u2—u3+u4 :8+4—4—3 .

5 5 26
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[teration

In MATLAB, you can do this as follows:

>> A= [-1.5 -6.0 5.8 7.0

-1.6

-8.8

5.0 2.0 1.0

4.0 4.0

-1.0

—
_
N—
I
=]
Y
g
— O\
<t -
e (N
AN
|
O ©
1 00
4
NN
. <
N M
|
O N
m N > -1 A
- — |l
— <
n
| [ | I
Q0]
> O
Va VAN
Va VAN
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[teration

 Why use \ as an operator?

1 1
— AU ==
A A

28
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Gaussian elimination with partial pivoting

* Question:

— Suppose we followed the rules of Gaussian elimination,
and one of the “largest entries in magnitude” we
found was very small relative to other diagonal entries

52 1 -1 8
06 1 3 -17
0 0 -10"° —2 -34
0 0 0 8 -24

— Is the original matrix 4 still invertible?
* We'll discuss this later...

29



.__.,_l!f?.-.'-.s,!.-.""
[teration
Recall the fixed-point theorem:
— If we are trying to solve x = f (x),
one technique is to start with an initial approximation x, and
then iterate x,,, = f(x,) until either
* This sequence appears to converge
— Successive values are close enough
* A maximum number of iterations has occurred
Sometimes, it is possible to rewrite an equation so that it is
in this form: [y :
-1+ You don’t have to
X2+X—3=O 1++v13 @knowhowtofind
2 these
— This can be rewritten as either
a2 :3—x:§_4 _ 3
X =0-—-X X A —

X X x+1 30
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[teration

* Now, take a look at this equation:

Au=v
 [tis not of the form

u:f(u)

— (Can we rewrite it?

31
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[teration

* There are some properties of matrices that are seen in
engineering:
— Matrices may be strictly diagonally dominant

* Thatis, each diagonal entry is greater than the sum of the absolute
values of all other entries in their rows or their column columns

— This ensures that the diagonal entries are all non-zero
— It also guarantees the matrix is invertible
— Of these two matrices, the right is diagonally dominant

(-1.5 -6 58 7 20 03 -04 0.5
4 4 88 -1.6 0.1 5 1.2 -0.3
5 2 1 -1 0.7 02 4 -1.1
3 72 16 24 04 13 06 10

32
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[teration
* Consider this equation:
Au=v

* We can rewrite 4 as the sum of a diagonal matrix and
an off-diagonal matrix

A=A

diag

Aff

— For example,

(20 03 —04 05) (20 0 0 0) (0 03 —04 05
01 5 12 —03 5 0 01 0 12 —03
07 02 4 -1.1]| 0 4 o7 02 0 LI
04 13 06 10 0 0 0 10) {04 13 06 o0 |

33
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[teration

Thus, we may rewrite this equation

Au=v
(Adiag + Aoff )u =V
From linear algebra, you know that (4 + B)u = Au + Bu
— Thus
Adiagu + Aoff u=yv

The problem is, we still need to isolate a u...

34
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[teration

 Of these two matrices, which is invertible?

20 0 0 O0) (0 03 -04 0.5

0 5 0 0 0.1 0O 1.2 0.3
0 0 4 0 0.7 02 0 -1.1
.0 0 0 10 04 13 06 O

* Ifyou said “both”, you're right, but how?
— After all, this matrix is singular (not invertible):

0 03 -04 0.5)
0.1 0 1.6 —0.3
07 02 0 -1.1
(1.0 1.3 06 O

S
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[teration

From linear algebra,
a diagonal matrix is invertible if and only if
all the diagonal entries are non-zero

The inverse of an invertible diagonal matrix is that matrix
with the reciprocals of the diagonal entries

20 0 0 O 005 0 0 0
o 5 0 0 e 0 02 0 0
= 0 4 0 W10 0 025 0

0 0 0 10 0 0 0 0.1

Recall that if 4 is invertible, then u = 4 v solves Au=v

— Normally, we don’t want to find the inverse,

but for diagonal matrices, it is a numerically safe operation36



[teration

* (Question:
— Is this matrix still invertible?

(20 0
0

S A~ O O

S O D

\
— We'll discuss this later...

37
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[teration

Okay, so given this derivation:
Au=v

+A0ff)u =V
A

diag W T Asu=vV
— The diagonal matrix is invertible, so:

¥

diag

* Bring the vector 4 4 u to the other side:

A

diag
* Multiply both sides by the inverse of 4 ,,:

Adlag (Adlag ) Adlag (V A ffu)
(Agae A )0 ) = Ay (v—A4u)

diag diag (

Adlag ( Aoff u)

u=v-—4_.u

38
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[teration

Thus, we have now transformed

into the equivalent equation

This is of the form u = f(u)

— Thus, if we find a solution to the second,
that solution is also a solution to the first

39
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[teration

This is not something to do by hand, so let us go to MATLAB:

>> A = [20.0 0.3 -0.4 0.5
-0.3
-1.1
10.0];

A1

0.1
0.7
0.4

Nk e un
&)(uf\)b
N © DR
®© o ® N

>> v = [0.3 0
>> U

0.01160226827793914
0.1134499024722330
-0.05006035517628202

0.02779104325806907

>> Adiag = diag( diag( A ) );
>> Aoff = A - Adiag;
>> InvAdiag = inv( Adiag );

40
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Iteration
>> £ = @(u)( InvAdiag*(v - Aoff*u) );
>> u@ = InvAdiag*v; % Solution to Adiag u@ = v
>> for k = 1:100 1
previous_u@ = ul; (V—Aoffll)
ue = f( uo ); g Au=v
if norm( u@ - previous u@ ) < 1e—64dmg110 vV
uo
break;
end
end
ue = U =
0.01160226317322344
0.1134498919522636 0.01160226827793914
-90.05006031299952349 0.1134499024722330
0.02779101753556567 -0.05006035517628202
>> kk . 0.02779104325806907

>> norm( u@ - u );
5.076666249750968e-08

41




[teration

This is called the Jacobi method

— Itis guaranteed to converge to a solution if the matrix is strictly
diagonally dominant

— In other cases, it may diverge, even if the matrix is only
diagonally dominant

— Later, we will see a variation called the Gauss-Seidel method

42
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[teration

* Question:

Which should we choose?

u= Ac?iilg (V — Aoffu)

4l -1
u=A;, V- (Adiag Ay )“

The first requires an O(n) calculation each iteration

The second requires an O(n + n?) calculation up front

[f the number of iterations is significantly less
than the number of equations, we should use the first

43
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[lI-conditioned systems

We have covered how to minimize numeric error when
solving a system of linear equations

There are systems, however, that are inherently numerically

unstable
One problem in engineering is that nothing is exact:
Au=v
* There are errors in the matrix 4
* There are errors in the target vector v

* There are round-off errors and errors due to subtractive
cancellation

Can these errors be magnified in u?
Can we accidentally design a system that is ill-conditioned

44
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[lI-conditioned systems

Consider this matrix:

(4 -3 4)
A=12 4 3
3 3 4

— The determinant is one: det(4) = 1

If v

(5
9

10

, the solutionto Au=visu =

(1)

A )

45
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[lI-conditioned systems

 What happens if there is an error in the matrix?

(3.99 -2.99 3.99) (4 -3 4)
A=|199 399 3.01| A=2 4 3
(3.01  3.01 3.99) 3 3 4
(200 )
* The solutionto Al = v is @l = 33.5
\—173.643 1
— Recall that the solutionto Au=vwasu=| 1
~ 1
— The relative error is HUH_Huuz ~153.0 or 15300%
u 46
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[lI-conditioned systems

(4 -3 4
 Consider this matrix: 4 =| 2 4 3
\3 3 4 )
[ 4.99) (0.44 )
e If v=| 8.99 |, thesolutiontoAu=visu=|0.91
10.01 1.49
N J 1\ J
— Recall that the solutionto Au=vwas u=| 1

Jv—, 1

— A relative error of H H ~ (0.0012 in the target vector
\%

results in the relative error of H H ~ (.43 in the solution
Jul .
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[lI-conditioned systems

In first year, you were repeatedly told to check if the
determinant was non-zero when checking for invertibility

— Unfortunately, due to numeric error, the determinant of even
clearly non-invertible matrices is non-zero

— Consider
>>B =[123; 456; 7 8 9],
>> det( B ) (1 2 3)
ans = 4 5 6
-9.5162e-16 K7 ] 9/
>> 2*B(:,2) - B(:,1)
ans =

O O W

48
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[lI-conditioned systems
 What is better to check are the singular values
— Specifically, the ratio between the largest singular value
and the smallest singular value
* The largest singular value is the most a matrix stretches
the norm of a vector
* The smallest singular value is the least a matrix stretches
the norm of a vector
>> A= [4 -3 4; 2 4 3; 3 3 4]; (4 -3 4)
>> svd( A ) A=|2 4 3
ans = 3 3 4

8.5702
5.5274
0.0211

49



-----

[lI-conditioned systems

Suppose a 3 x 3 matrix 4 has rank(4) =2
— The matrix is not invertible

— The image of the unit sphere will be an ellipse centered at the
origin on a plane passing through the origin

Suppose now 3 x 3 matrix 4 has rank(4) = 3, but where the
image of the unit sphere is now pancake shaped

— In our example,

* The sphere is stretched by a factor of almost 10

* In another perpendicular direction by a factor of 5

* In another perpendicular direction it is shrunk by a factor of 50
— The matrix is invertible, but it is close to a matrix that is not
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[lI-conditioned Systems

* This matrix is not invertible, and the image of the unit sphere is

an ellipse in R’ (4 3 4)
A=|2 4 3
3.04 3 4
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[lI-conditioned Systems

* This matrix is invertible, but very close to the previous matrix

(4 -3 4)
A=12 4 3
3 3 4
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-----

[lI-conditioned systems

This ratio between the largest and smallest stretch is called the
condition number and it describes the maximum increase in the
relative error when solving a system of linear equations

>> A =1[4 -3 4; 24 3; 3 3 4];

>> cond( A )
ans =
405.9726
>> Format hex 000000000106
>> A 59 10]'
\ ] ..111111010160
ans =
3000000000019
3ff0000000000004 @ You don’t have to lfn.ow how to
calculate the condition number
3fefffFfffffffda
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[lI-conditioned systems

The larger the condition number:
— The larger small errors in the matrix will be magnified
— The larger small errors in the target vector will be magnified

— The larger round-off error and effects of subtractive
cancellation will be magnified

For the purposes of this course,
you must simply be aware that a large condition number
suggests you must consider how sensitive your system
is to errors in the implementation

@ You don’t have to know how to
calculate the condition number
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Summary

Following this topic, you now

Understand that solving a system of linear equations may
result in significant errors

Understand that the Gaussian elimination algorithm with
partial pivoting reduces the effect of such errors

Have seen the Jacobi method, where we approximate a solution
to a system of linear equations using iteration

Are aware of the condition number of a matrix
* You do not need to know how to calculate the condition number
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Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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