
ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca
dwharder@gmail.com

Linear algebra



Introduction

• In this topic, we will
– Look at how floating-point numbers can seriously affect

the results of Gaussian elimination and backward substitution
– Describe the Gaussian elimination algorithm with

partial pivoting
– Look at the Jacobi method for approximating the solution to

a system of linear equations using iteration
– Describe the condition number of a matrix

Linear algebra

2



Linear algebra

• Systems of linear equations are often the only ones that can be
approximated numerically with reasonable certainty
– Many non-linear systems are often approximated using linear systems

• For example, small-signal analysis of non-linear devices
– The modelling of objects with momentum can generally be

done locally in time by linear approximations
• This of course fails if, for example, an object strikes another object 

Linear algebra

3



Linear algebra

• Consider a system of n linear equations in n unknowns
Au = v

• To solve such a system, we:
– Create the n × (n + 1) augmented matrix
– We apply row operations on the augmented matrix until

the matrix is in row-echelon form
• The three elementary row operations are:

– Swapping two rows
– Adding a multiple of one row onto another
– Multiplying a row by a non-zero scalar

• The first two are used for this process of Gaussian elimination
– If rank( A ) = n, we may use backward substitution to find

the unique solution

Linear algebra

4

( )A v



Issues with linear algebra

• Issues:
– If the matrix A is dense, the number of floating-point operations

(FLOPs) can be as high as 

– Many times, in adding a multiple of one row onto another,
    there is the possibility of subtractive cancellation

– Additionally, adding a large multiple of one row onto another
may result in x + y = y when x is the critical value

Linear algebra

5

3 22 1 1
3 2 6

n n n− −



Issues with linear algebra

• Consider the following system:

• By observation, the solution should be close to

– The exact solution is

– To four significant digits, this is 

Linear algebra

6

0.00001 1 1
1 1 2

   
=   

   

+441000 +491000 +491000
+491000 +491000 +492000

1
1
 

=  
 

u

100000
1.0000199999

99998 0.99998
99999

 
   
 = =       
 

u

 
≈  
 

u
+491000
+491000



Issues with linear algebra

• Now, applying Gaussian elimination:

– Add –100 000 times Row 1 onto Row 2, resulting the calculations:
  –100 000 + 1 = –99 999
  –100 000 + 2 = –99 998
– Thus, we are left with

– Thus u2 = 1
– Substituting this into Row 1, we get that u1 = 0 

Linear algebra

7

0.00001 1 1
1 1 2
 
 
 

0.0001 1 1
0 100000 100000
 
 − − 

= –541000
= –541000

0
1
 

=  
 

u



Issues with linear algebra

• Thus, while the best answer is

      Gaussian elimination and backward substitution gave us

• What happened?
– When we added a huge multiple of Row 1 onto Row 2,

  this had the effect of swamping out Row 2
• Recall that a2, j + ca1, j = ca1, j if ca1, j >> a2, j

• Consequently, the matrix ended up looking like:

Linear algebra

8

 
≈  
 

u
+491000
+491000

 
≈  
 

u
+000000
+491000

1,1 1,2 1,3 1,1 1,2 1,3

2,1 2,2 2,3 1,2 1,3

~
0

a a a a a a
a a a ca ca
   
   − −   



Partial pivoting

• Thus, by adding a large multiple of one row onto another,
 we lost all information about that second row

• Recall in linear algebra,
   if you had a zero in the pivot position, you’d swap two rows:

• Gaussian elimination with partial pivoting says to swap the row 
with the largest-in-magnitude entry on or below the pivot to
the pivot row

Linear algebra

9

0 1 1
1 1 2
 
 
 

1 1 2
~

0 1 1
 
 
 



Partial pivoting

• Applying this here, we would now have:

– Adding –0.00001 times Row 1 onto Row 2 now leaves Row 2
unchanged:

– Applying backward substitution, gives us that 

Linear algebra

10

0.00001 1 1
1 1 2
 
 
 

1 1 2
~

0.00001 1 1
 
 
 

1 1 2
~

0 1 1
 
 
 

1
1
 

=  
 

u



Partial pivoting

• You may think this is unlikely to occur with double-precision 
floating-point numbers, but consider:

– The unique solution is clearly 

– Let us use Gaussian elimination as taught in first year

Linear algebra

11

2.1 0.7 7 9.8
0.3 0.1 0 0.4
0 1 1 2

 
 
 
 
 

1
1
1

 
 =  
 
 

u



Partial pivoting

• Neither 0.3 nor 2.1 can be stored exactly in binary,
 and there is also round-off error in calculating
– Adding this times Row 1 onto Row 2 yields:

– Technically, the entry at (2, 2) is non-zero,
 so next we add –256 times Row 2 onto Row 3:

Linear algebra

12

0.3
2.1

−

56

2.1 0.7 7 9.8 2.1 0.7 7 9.8
0.3 0.1 0 0.4 ~ 0 2 1 1
0 1 1 2 0 1 1 2

−

   
   
   
   
   

56

56 56

2.1 0.7 7 9.8 2.1 0.7 7 9.8
0.3 0.1 0 0.4 ~ 0 2 1 1
0 1 1 2 0 0 2 2

−

   
   
   
   
   



Partial pivoting

• Applying backward substitution:

– First, 

– Next,                             , so                           , and hence 
– Finally,                                                , so                             ,

      hence                             so                     and not  

Linear algebra

13

56

56 56

2.1 0.7 7 9.8 2.1 0.7 7 9.8
0.3 0.1 0 0.4 ~ 0 2 1 1
0 1 1 2 0 0 2 2

−

   
   
   
   
   

56

3 56

2 1
2

u = =

56
2 32 1u u− + = 56

22 1 1u− + = 2 0u =

1 2 32.1 0.7 7 9.8u u u+ + = 12.1 7 9.8u + =

1
2.8 1.3
2.1

u = =

1.3
0
1

 
 

=  
 
 

u
1
1
1

 
 =  
 
 

u



Partial pivoting

• Note that 

     while

– This is not a “pathological” matrix,
 one that might significantly amplify any error

Linear algebra

14

2.1 0.7 7 1 9.8
0.3 0.1 0 1 0.4
0 1 1 1 2

    
    =    
    
    

2.1 0.7 7 1.3 9.8
0.3 0.1 0 0 0.4
0 1 1 1 1

    
    =    

        



Partial pivoting

• Notice that  that swapping Rows 2 and 3 first yields

• Next adding –2–56 times Row 2 onto Row 3 makes no change

• Thus, backward substitution yields the solution 

Linear algebra

15

56

56

2.1 0.7 7 9.8 2.1 0.7 7 9.8
0 2 1 1 ~ 0 1 1 2
0 1 1 2 0 2 1 1

−

−

   
   
   
   
   

2.1 0.7 7 9.8
~ 0 1 1 2

0 0 1 1

 
 
 
 
  1

1
1

 
 =  
 
 

u



Gaussian elimination with partial pivoting

• Thus, you could describe the Gaussian elimination algorithm
where A:Rn → Rm so that A is an m × n matrix as follows:
1. Create the m × (n + 1) augmented matrix 
2. Assign i ← 1 and j ← 1
3. While  j ≤ n + 1,

i. If Column j contains no leading non-zero entries, update j ← j + 1
and return to Step 3.

ii. Find the row with the largest-in-magnitude non-zero leading entry
in Column j (if there are multiple such entries, pick one),
 and swap that row with Row i

iii. For each other Row k that has a leading non-zero entry in Column j,
 
 add                  times Row i onto Row k  

iv. Update i ← i + 1 and j ← j + 1; and return to Step 3.

Linear algebra

16

,

,

k j

i j

a
a

−

( )A v



Gaussian elimination with partial pivoting

• Why does this help?
– If the largest entry in absolute value is moved to the pivot,

 then when we add a multiple of one row onto another,
 we are guaranteed that 

– Thus, in general, we will avoid the issue of adding a significant
multiple of one row onto another

Linear algebra

17

,

,

1k j

i j

a
a

− ≤



Gaussian elimination with partial pivoting

• For example, suppose we are to solve

Linear algebra

18

1.5 6 5.8 7 12.7
4 4 8.8 1.6 34.4
5 2 1 1 8
3 7.2 1.6 2.4 12.2

− −   
   − − −   =
   −
   

−   

u



Gaussian elimination with partial pivoting

• First, we create the augmented matrix:

Linear algebra

19

1.5 6 5.8 7 12.7
4 4 8.8 1.6 34.4
5 2 1 1 8
3 7.2 1.6 2.4 12.2

− − 
 − − − 
 −
 

− 



1.5 6 5.8 7 12.7
4 4 8.8 1.6 34.4
5 2 1 1 8
3 7.2 1.6 2.4 12.2

− − 
 − − − 
 −
 

− 

Gaussian elimination with partial pivoting

• Starting in the first column, the largest entry in absolute value
on or below entry (1, 1) is 5 in Row 3
– Swap Rows 1 and 3

 

Linear algebra

20

5 2 1 1 8
4 4 8.8 1.6 34.4

~
1.5 6 5.8 7 12.7
3 7.2 1.6 2.4 12.2

− 
 − − − 
 − −
 

− 



5 2 1 1 8
4 4 8.8 1.6 34.4

~
1.5 6 5.8 7 12.7
3 7.2 1.6 2.4 12.2

− 
 − − − 
 − −
 

− 

Gaussian elimination with partial pivoting

• Now, add appropriate multiples of Row 1 onto Rows 2, 3 and 4:
– Add –4/5 = –0.8 times Row 1 onto Row 2
– Add –(–1.5)/5 = 0.3 times Row 1 onto Row 3
– Add –3/5 = –0.6 times Row 1 onto Row 4

 

Linear algebra

21

5 2 1 1 8
0 2.4 9.6 0.8 40.8

~
0 5.4 6.1 6.7 15.1
0 6 1 3 17

− 
 − − − 
 −
 

− 



Gaussian elimination with partial pivoting

• Continuing in the second column, the largest entry in absolute 
value on or below entry (2, 2) is 6 in Row 4
– Swap Rows 2 and 4

 

Linear algebra

22

5 2 1 1 8
0 6 1 3 17

~
0 5.4 6.1 6.7 15.1
0 2.4 9.6 0.8 40.8

− 
 − 
 −
 

− − − 

5 2 1 1 8
0 2.4 9.6 0.8 40.8

~
0 5.4 6.1 6.7 15.1
0 6 1 3 17

− 
 − − − 
 −
 

− 



5 2 1 1 8
0 6 1 3 17

~
0 0 7 9.4 0.2
0 0 10 2 34

− 
 − 
 −
 

− − − 

Gaussian elimination with partial pivoting

• Now, add appropriate multiples of Row 2 onto Rows 3 and 4:
– Add –(–5.4)/6 = 0.9 times Row 2 onto Row 3
– Add –2.4/6 = –0.4 times Row 2 onto Row 4

 

Linear algebra

23

5 2 1 1 8
0 6 1 3 17

~
0 5.4 6.1 6.7 15.1
0 2.4 9.6 0.8 40.8

− 
 − 
 −
 

− − − 



Gaussian elimination with partial pivoting

• Continuing in the third column, the largest entry in absolute value 
on or below entry (3, 3) is –10 in Row 4
– Swap Rows 3 and 4

 

Linear algebra

24

5 2 1 1 8
0 6 1 3 17

~
0 0 10 2 34
0 0 7 9.4 0.2

− 
 − 
 − − −
 

− 

5 2 1 1 8
0 6 1 3 17

~
0 0 7 9.4 0.2
0 0 10 2 34

− 
 − 
 −
 

− − − 



5 2 1 1 8
0 6 1 3 17

~
0 0 10 2 34
0 0 0 8 24

− 
 − 
 − − −
 

− 

Gaussian elimination with partial pivoting

• Now, add an appropriate multiple of Row 3 onto Row 4:
– Add –7/(–10) = 0.7 times Row 3 onto Row 4 

Linear algebra

25

5 2 1 1 8
0 6 1 3 17

~
0 0 10 2 34
0 0 7 9.4 0.2

− 
 − 
 − − −
 

− 



Gaussian elimination with partial pivoting

• We can now use backward substitution to find the solution:

Linear algebra

26

5 2 1 1 8
0 6 1 3 17
0 0 10 2 34
0 0 0 8 24

− 
 − 
 − − −
 

− 

4
24 3
8

u −
= = −

( )4
3

34 2 334 2 4
10 10

uu
− + −− +

= = =
− −

3 4
2

17 3 17 4 9 2
6 6
u u

u
− − − − − +

= = = −

2 3 4
1

8 2 8 4 4 3 1
5 5

u u u
u

− − + + − −
= = =

1
2
4
3

 
 − =
 
 
− 

u



Iteration

• In MATLAB, you can do this as follows:
>> A = [-1.5 -6.0  5.8  7.0
         4.0  4.0 -8.8 -1.6
         5.0  2.0  1.0 -1.0
         3.0  7.2  1.6  2.4];
>> v = [12.7 -34.4 8.0 -12.2]';
>> u = A\v

ans =
         1
        -2
         4
        -3         

Linear algebra

27

1
2
4
3

 
 − =
 
 
− 

u



• Why use \ as an operator?         

u =

Iteration
Linear algebra

28

1
A v

A
1
A



Gaussian elimination with partial pivoting

• Question:
– Suppose we followed the rules of Gaussian elimination,

and one of the “largest entries in magnitude” we
found was very small relative to other diagonal entries

– Is the original matrix A still invertible?
• We’ll discuss this later…

Linear algebra

29

10

5 2 1 1 8
0 6 1 3 17
0 0 10 2 34
0 0 0 8 24

−

− 
 − 
 − − −
 

− 



Iteration

• Recall the fixed-point theorem:
– If we are trying to solve x = f (x),

one technique is to start with an initial approximation x0 and
then iterate xk+1 = f (xk) until either

• This sequence appears to converge
– Successive values are close enough

• A maximum number of iterations has occurred

• Sometimes, it is possible to rewrite an equation so that it is
in this form:

– This can be rewritten as either

Linear algebra

30

2 3 0x x+ − =

23x x= −
3 3 1xx

x x
−

= = − 3
1

x
x

=
+

1 13
2

− ± You don’t have to
know how to find 
these



Iteration

• Now, take a look at this equation:

• It is not of the form 

– Can we rewrite it?

Linear algebra

31

A =u v

( )=u f u



Iteration

• There are some properties of matrices that are seen in 
engineering:
– Matrices may be strictly diagonally dominant

• That is, each diagonal entry is greater than the sum of the absolute 
values of all other entries in their rows or their column columns

– This ensures that the diagonal entries are all non-zero
– It also guarantees the matrix is invertible
– Of these two matrices, the right is diagonally dominant

Linear algebra

32

1.5 6 5.8 7
4 4 8.8 1.6
5 2 1 1
3 7.2 1.6 2.4

− − 
 − − 
 −
 
 

20 0.3 0.4 0.5
0.1 5 1.2 0.3
0.7 0.2 4 1.1
0.4 1.3 0.6 10

− 
 − 
 −
 
 



Iteration

• Consider this equation:

• We can rewrite A as the sum of a diagonal matrix and
 an off-diagonal matrix

– For example,

Linear algebra

33

A =u v

diag offA A A= +

0

2

0

0 0.3 0.4 0.5 20 0.3 0.4 0.5
0.1 5 1.2 0.3 5 0.1 1.2 0.3
0.7 0.2 4 1.1 4 0.7 0.2 1.1
0.4 1.3 0.6 10 10 0.4 1.3

0 0 0 0
0 0 0 0
0 0 0
0 0

0
.6 0

− −     
     − −     = +
     − −
     
     



Iteration

• Thus, we may rewrite this equation

• From linear algebra, you know that (A + B)u = Au + Bu
– Thus

• The problem is, we still need to isolate a u…

Linear algebra

34

( )diag off

A

A A

=

+ =

u v

u v

diag offA A+ =u u v



Iteration

• Of these two matrices, which is invertible?

• If you said “both”, you’re right, but how?
– After all, this matrix is singular (not invertible):

Linear algebra

35

20 0.3 0.4 0.5
5 0.
0 0 0 0

0 00 0 0
0 0 0 0
0 0

1 1.2 .3
4 0.7 0.2
0

1.1
10 0.4 1 0.3 0.6

−   
   −   
   −
   
   

2

0

0

0.3 0.4 0.5
0.1 1.6 0.3
0.7 0. 1.1
1.0 1.3 0.

0

6 0

− 
 − 
 −
 
 



Iteration

• From linear algebra,
 a diagonal matrix is invertible if and only if
 all the diagonal entries are non-zero

• The inverse of an invertible diagonal matrix is that matrix
with the reciprocals of the diagonal entries

• Recall that if A is invertible, then u = A–1v solves Au = v
– Normally, we don’t want to find the inverse,

 but for diagonal matrices, it is a numerically safe operation

Linear algebra

36

diag

0 0 0
0

1

0 0
0 0 0

20
5

4
00 0 0

A

 
 
 =
 
 
 

1
diag

0.05
0.2

0
0

0 0

0 .
0

25
.1

0
0 0

0 0
0 0 0

A−

 
 
 =
 
 
 



Iteration

• Question:
– Is this matrix still invertible?

– We’ll discuss this later…

Linear algebra

37

10

20
5

4
1

0 0 0
0 0 0
0 0

0 0 0
0

0 −

 
 
 
 
 
 



Iteration

• Okay, so given this derivation:

– The diagonal matrix is invertible, so:
• Bring the vector Aoff u to the other side:

• Multiply both sides by the inverse of Adiag:

Linear algebra

38

( )diag off

diag off

A

A A

A A

=

+ =

+ =

u v

u v

u u v

diag offA A= −u v u

( ) ( )1 1
diag diag diag offA A A A− −= −u v u

( ) ( )1 1
diag diag diag offA A A A− −= −u v u

( )1
diag offA A−= −u v u



Iteration

• Thus, we have now transformed

     into the equivalent equation

• This is of the form u = f(u)
– Thus, if we find a solution to the second,

  that solution is also a solution to the first

Linear algebra

39

A =u v

( )1
diag offA A−= −u v u



Iteration

• This is not something to do by hand, so let us go to MATLAB:
>> A = [20.0  0.3 -0.4  0.5
         0.1  5.0  1.2 -0.3
         0.7  0.2  4.0 -1.1
         0.4  1.3  0.6 10.0];
>> v = [0.3 0.5 -0.2 0.4]';
>> u = A\v
    u =
        0.01160226827793914
        0.1134499024722330
       -0.05006035517628202
        0.02779104325806907

>> Adiag = diag( diag( A ) );
>> Aoff = A - Adiag;
>> InvAdiag = inv( Adiag );

Linear algebra

40



Iteration
>> f = @(u)( InvAdiag*(v - Aoff*u) );
>> u0 = InvAdiag*v;        % Solution to Adiag u0 = v
>> for k = 1:100
       previous_u0 = u0;
       u0 = f( u0 );

       if norm( u0 - previous_u0 ) < 1e-6
           u0
           break;
       end
    end
      u0 =
          0.01160226317322344
          0.1134498919522636
         -0.05006031299952349
          0.02779101753556567
>> k
    k = 8
>> norm( u0 - u );
    5.076666249750968e-08

Linear algebra

41

u =
        0.01160226827793914
        0.1134499024722330
       -0.05006035517628202
        0.02779104325806907

( )1
diag offA A− −v u

diag 0A =u v
A =u v



Iteration

• This is called the Jacobi method
– It is guaranteed to converge to a solution if the matrix is strictly

diagonally dominant
– In other cases, it may diverge, even if the matrix is only 

diagonally dominant 
– Later, we will see a variation called the Gauss-Seidel method

Linear algebra

42



Iteration

• Question:
– Which should we choose?

– The first requires an O(n) calculation each iteration
– The second requires an O(n + n2) calculation up front
– If the number of iterations is significantly less

than the number of equations, we should use the first

Linear algebra

43

( )1
diag offA A−= −u v u

( )1 1
diag diag offA A A− −= −u v u



Ill-conditioned systems

• We have covered how to minimize numeric error when 
solving a system of linear equations
– There are systems, however, that are inherently numerically 

unstable
– One problem in engineering is that nothing is exact:

• There are errors in the matrix A
• There are errors in the target vector v
• There are round-off errors and errors due to subtractive

cancellation
– Can these errors be magnified in u?
– Can we accidentally design a system that is ill-conditioned

Linear algebra

44

A =u v



Ill-conditioned systems

• Consider this matrix:

– The determinant is one: det(A) = 1

• If                     , the solution to Au = v is  

Linear algebra

45

1
1
1

 
 =  
 
 

u

4 3 4
2 4 3
3 3 4

A
− 

 =  
 
 

5
9

10

 
 =  
 
 

v



Ill-conditioned systems

• What happens if there is an error in the matrix?

• The solution to                 is  

– Recall that the solution to Au = v was  

– The relative error is                                      or 15300%

Linear algebra

46

3.99 2.99 3.99
1.99 3.99 3.01
3.01 3.01 3.99

A
− 

 =  
 
 



A =u v 

200
33.5

173.643

 
 =  
 − 

u

4 3 4
2 4 3
3 3 4

A
− 

 =  
 
 

1
1
1

 
 =  
 
 

u

2

2

153.0
−

≈
u u

u




Ill-conditioned systems

• Consider this matrix:

• If                           , the solution to                is

– Recall that the solution to Au = v was  

– A relative error of                                         in the target vector

     results in the relative error of                                   in the solution

Linear algebra

47

0.44
0.91
1.49

 
 =  
 
 

u

4 3 4
2 4 3
3 3 4

A
− 

 =  
 
 

4.99
8.99

10.01

 
 =  
 
 

v A =u v 

1
1
1

 
 =  
 
 

u

2

2

0.43
−

≈
u u

u


2

2

0.0012
−

≈
v v

v




Ill-conditioned systems

• In first year, you were repeatedly told to check if the 
determinant was non-zero when checking for invertibility
– Unfortunately, due to numeric error, the determinant of even 

clearly non-invertible matrices is non-zero
– Consider 

>> B = [1 2 3; 4 5 6; 7 8 9];
>> det( B )
    ans =
        -9.5162e-16
>> 2*B(:,2) - B(:,1)

ans =
3
6
9

Linear algebra

48

1 2 3
4 5 6
7 8 9

 
 
 
 
 



Ill-conditioned systems

• What is better to check are the singular values
– Specifically, the ratio between the largest singular value

and the smallest singular value
• The largest singular value is the most a matrix stretches

the norm of a vector
• The smallest singular value is the least a matrix stretches

the norm of a vector
>> A = [4 -3 4; 2 4 3; 3 3 4];
>> svd( A )

ans =
8.5702
5.5274
0.0211

Linear algebra

49

4 3 4
2 4 3
3 3 4

A
− 

 =  
 
 



Ill-conditioned systems

• Suppose a 3 × 3 matrix A has rank(A) = 2
– The matrix is not invertible
– The image of the unit sphere will be an ellipse centered at the 

origin on a plane passing through the origin

• Suppose now 3 × 3 matrix A has rank(A) = 3, but where the 
image of the unit sphere is now pancake shaped 
– In our example,

• The sphere is stretched by a factor of almost 10
• In another perpendicular direction by a factor of 5
• In another perpendicular direction it is shrunk by a factor of 50

– The matrix is invertible, but it is close to a matrix that is not

Linear algebra

50



Ill-conditioned Systems

• This matrix is not invertible, and the image of the unit sphere is 
an ellipse in R3

Linear algebra

51

4 3 4
2 4 3
3.04 3 4

A
− 

 =  
 
 





Ill-conditioned Systems

• This matrix is invertible, but very close to the previous matrix

Linear algebra

52

4 3 4
2 4 3
3 3 4

A
− 

 =  
 
 



Ill-conditioned systems

• This ratio between the largest and smallest stretch is called the 
condition number and it describes the maximum increase in the 
relative error when solving a system of linear equations

>> A = [4 -3 4; 2 4 3; 3 3 4];
>> cond( A )

ans =
405.9726

>> format hex
>> A \ [5 9 10]'

ans =
3ff0000000000019
3ff0000000000004
3fefffffffffffd4

Linear algebra

53

…000000011001
…000000000100
…111111010100

You don’t have to know how to 
calculate the condition number



Ill-conditioned systems

• The larger the condition number:
– The larger small errors in the matrix will be magnified
– The larger small errors in the target vector will be magnified
– The larger round-off error and effects of subtractive 

cancellation will be magnified

• For the purposes of this course,
 you must simply be aware that a large condition number
 suggests you must consider how sensitive your system
 is to errors in the implementation

Linear algebra

54

You don’t have to know how to 
calculate the condition number



Summary

• Following this topic, you now
– Understand that solving a system of linear equations may

result in significant errors
– Understand that the Gaussian elimination algorithm with 

partial pivoting reduces the effect of such errors
– Have seen the Jacobi method, where we approximate a solution

to a system of linear equations using iteration
– Are aware of the condition number of a matrix

• You do not need to know how to calculate the condition number

Linear algebra

55



References

[1] https://en.wikipedia.org/wiki/Gaussian_elimination
[2] https://en.wikipedia.org/wiki/Pivot_element
[3] https://en.wikipedia.org/wiki/Jacobi_method
[4] https://en.wikipedia.org/wiki/Condition_number

Linear algebra

56



Acknowledgments

Tazik Shahjahan for pointing out typos.
Hassaan Ali Qazi for suggesting showing the images of the unit sphere under the 
two matrices, one ill-conditioned, the other non-invertible.

Linear algebra

57



Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.
Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/
for more information.

Linear algebra

58



Disclaimer

These slides are provided for the ECE 204 Numerical methods 
course taught at the University of Waterloo. The material in it 
reflects the author’s best judgment in light of the information 
available to them at the time of preparation. Any reliance on these 
course slides by any party for any other purpose are the 
responsibility of such parties. The authors accept no responsibility 
for damages, if any, suffered by any party as a result of decisions 
made or actions based on these course slides for any other purpose 
than that for which it was intended.

Linear algebra

59


	Linear algebra
	Introduction
	Linear algebra
	Linear algebra
	Issues with linear algebra
	Issues with linear algebra
	Issues with linear algebra
	Issues with linear algebra
	Partial pivoting
	Partial pivoting
	Partial pivoting
	Partial pivoting
	Partial pivoting
	Partial pivoting
	Partial pivoting
	Gaussian elimination with partial pivoting
	Gaussian elimination with partial pivoting
	Gaussian elimination with partial pivoting
	Gaussian elimination with partial pivoting
	Gaussian elimination with partial pivoting
	Gaussian elimination with partial pivoting
	Gaussian elimination with partial pivoting
	Gaussian elimination with partial pivoting
	Gaussian elimination with partial pivoting
	Gaussian elimination with partial pivoting
	Gaussian elimination with partial pivoting
	Iteration
	Iteration
	Gaussian elimination with partial pivoting
	Iteration
	Iteration
	Iteration
	Iteration
	Iteration
	Iteration
	Iteration
	Iteration
	Iteration
	Iteration
	Iteration
	Iteration
	Iteration
	Iteration
	Ill-conditioned systems
	Ill-conditioned systems
	Ill-conditioned systems
	Ill-conditioned systems
	Ill-conditioned systems
	Ill-conditioned systems
	Ill-conditioned systems
	Ill-conditioned Systems
	Ill-conditioned Systems
	Ill-conditioned systems
	Ill-conditioned systems
	Summary
	References
	Acknowledgments
	Colophon 
	Disclaimer

